Archived CGRER Seed Grants Awards
2009 | 2008 | 2007 | 2006 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1996 | 1995 | 1994 | 1993 | 1992
-
2009
-
Speleothem Evidence for the Influences of Enso and Solar Variability on the Holocene Australian Summer Monsoon 0 Rhawn Denniston, Department of Geology, Cornell College
The influences of solar activity and the El Nino/Southern Oscillation (ENSO) on decadal and centennial-scale monsoon variability are fundamental but poorly understood components of Earth’s climate system. Analysis of a Holocene stalagmite from the monsoon-dominated and ENSO-sensitive region of northern Australia reveals correlations between (1) stalagmite carbon and oxygen isotopic composition and solar variability, and (2) stalagmite growth hiatuses and ENSO frequency/intensity. Before this promising avenue of research into the Australian Summer Monsoon (AuSM) can be fully exploited, however, three fundamental questions must be answered. First, what mechanism(s) are driving stalagmite carbon isotopic variability? Second, are monsoon amount effect signatures in stalagmite oxygen isotopic ratios masked by evapokinetic effects? And thirdly, do stalagmite growth hiatuses represent regional drought or the peculiarities of karst hydrology? Isotopic and trace elemental analyses of cave dripwater and stalagmites will allow a better understanding of climate signals in northern Australia stalagmites.
-
Carbon Dioxide Adsorption and Conversion on Nanomaterials – Vicki Grassian, Department of Chemistry, University of Iowa
Reduction of carbon dioxide emissions and utilization of carbon dioxide are widely regarded as both grand challenges and opportunities for scientists and engineers.1-3 In a recent workshop report by the National Science Foundation, nanoscience and catalysis have been identified as two enabling areas that could provide the scientific and technological innovations needed to address sustainability issues such as carbon dioxide mitigation.3 In this context, oxide nanomaterial catalysts are the focus of the proposed research. Major goals of the proposed studies are to use these materials for carbon dioxide storage and as catalysts to achieve high selectivity and efficiency in key steps for the conversion of carbon dioxide into more useful chemicals, such as methanol. These catalysts can be used alone or coupled with biocatalysts in some cases for processes that benefit from the synergism of nanoscience and biocatalysis for enhanced efficiency and conversion (i.e. development of hybrid nanomaterials in collaboration with people in CBB such as Director Manny Subramanian).
-
A Context for Alpine Tundra Response to Climate Change – George Malanson, Department of Geography, University of Iowa
The diversity of alpine tundra may be reduced by climate warming. Ongoing monitoring includes the extensive GLORIA (GLobal Observation Research Initiative in Alpine Environments; http://www.gloria.ac.at/) program, including sites in the West. To provide context across the West, we will assemble and organize all available studies of alpine tundra in which community composition is available. We will develop an algorithm for resampling these data by comparing the common sampling methods from past studies as applied to a range of types of alpine tundra. We will repeatedly sample alpine tundra using the most common methods of prior studies. Lastly we will create a statistical mapping of these data so that the variation of alpine tundra can be described, major axes derived, and a template within which to analyze change can be provided as a guide for adaptation to and mitigation of the impacts of climate change.
-
The Effects of Climate Change on Soil Organic Matter and Soil Quality in Iowa – Thanos Papanicolaou, Jerry Schnoor, Department of Civil and Environmental Engineering, University of Iowa; and Lee Burras, Department of Agronomy, Iowa State University
In Iowa, projected climate shifts coupled with intense agriculture activities may have detrimental effects on the sustainability of a healthy soil, i.e., a soil that is rich in organic matter (SOM). Collectively, increased precipitation and intense agriculture can trigger increased erosion and sequential loss of large quantities of SOM. We argue that management practices can either amplify (as with conventional tillage practices) or dampen (as with conservation tillage practices) the impacts of precipitation on SOM redistribution. Understanding the interplay between climate shifts and management practices is critical for minimizing SOM loss and constitutes the overarching goal of this grant. This research involves coupled field and model studies. Limited but representative plot measurements will be conducted to measure SOM redistribution for model calibration and verification. These models then will be used to perform “thought experiments” for assessing the response of SOM to projected climate and land use changes at larger scales.
-
Sustainability of Crop Yields and Wind Power in Iowa Under Expansion of Wind Farms – Moti Segal, Department of Agronomy and Eugene Takle, Department of Geological and Atmospheric Sciences, Iowa State University
We will evaluate the environmental interactions and economic benefits of wind turbines with crops through assessment of altered surface drag (wind power production) and induced changes in crop growing conditions (biomass production) when agricultural crops are raised over vast regions within wind farms. These interactions are associated with unique climate change, which will affect such regions. There have been no studies addressing the relationships between wind power resources and the agricultural cropping systems of the Midwest. Quantification of this synergy and development of strategies are imperative for optimizing economic gain. We will use a wind turbine numerical model to quantify meteorological features impacts downwind from wind turbines and their interactions at the surface with crops. The model will also assess the impacts of crop management on wind power availability and determines optimal configurations of wind farms with these roughness changes.
-
Ecological Physiology, Gene Flow, and Demography among Fiddler Crab Populations (Genus Uca) Along the South Atlantic Coast of Brazil – Carl Thurman, Department of Biology, University of Northern Iowa
Intra- and interspecific variation in morphology, population genetics, and physiology will be assessed across the ranges of nine species of fiddler crabs along the southern coast of Brazil (Appendix. 1, Fig. 7). Patterns of variation will be compared eventually to those in Uca from temperate and subtropical regions of the Atlantic Ocean. This unique approach will permit a comprehensive understanding of diversity and distribution of species. The study will contribute to a better understanding of the physiological processes and genetics mechanisms enabling shallow-water marine organisms to acclimate and adapt to a changing environment. Since Uca are integral in the ecology of shallow-water marine habitats, an understanding of their movements and distributions across ecosystems will provide the initial ingredients to develop a suitable paradigm of maritime conservation. This international program is likely to make a substantial contribution towards a realistic model for management of marine ecosystems on a global scale.
-
-
2008
In 2008, CGRER awarded five seed grants totaling $143,873.
-
Development of Prototype Instrumentation for Ultra-High Resolution Measurement of Land Surface Relief
Studies of land-atmosphere interactions, and surface-fluid processes such as soil erosion, are limited by researchers’ abilities to characterize the shape and roughness of the Earth’s surface. William Eichinger, Witold Krajewski, Thanos Papanicolaou, and Anton Kruger developed instrumentation capable of mapping small areas (about 50 square meters) at extremely high resolution (less than 1 centimeter). Most of the funding was used to construct a portable framework to hold and move a lidar (light-radar) measuring instrument over the study area. The lidar instrument bounced a pulse of light off the soil surface, and mapped soil roughness by measuring the light’s return time.
-
Tailoring the Surface Properties of Nanocrystalline Zeolites for Environmental Applications: Insights from DFT Calculations
Zeolites are alumino-silicates with very large surface areas that are already widely used in catalysis and in water softeners. Sarah Larsen’s research project involved very small zeolites — nanocrystalline zeolites with crystal sizes less than 100 nm in diameter. These tiny particles are porous, but have large surface areas and decreased diffusion path lengths relative to microcrystalline zeolites. As such, they can be tailored to environmental applications, such as adsorption of air or water pollutants. The study used DFT (Density Functional Theory) calculations to model surface properties of functionalized nanocrystalline zeolites, so that their properties could be optimized for these environmental applications.
-
Climate Change Impacts on Cold Season Hydrologic Processes and Spring Soil Moisture Recharge in the Upper Midwest
This grant, awarded to Kristie Franz, initiated studies of past and projected changes in the Midwest’s cold-season climate: its snow cover, snow melt rates, and frozen ground traits. These traits are crucial to understanding spring soil-moisture recharge, spring flooding, and water availability to summer crops, yet Midwestern cold-season climate has not been previously studied in much depth. Weather records for the past 50 years were used to assess and model historic weather, stream flow, and soil moisture trends for six Minnesota and Iowa watersheds; hydrological models were then used to estimate expected climate-change-related alterations of 2041-2070 cold-season hydrologic processes. Such models are vital for assessing the impact of a changing climate on the water cycle, thereby producing information that could guide future land use and natural disaster planning.
-
Discovering the Vertical Dimension of Atmospheric New Particle Formation: Aircraft Profiling Proof of Concept
Ultrafine atmospheric particles play important roles in regulating climate because they are potential seeds for cloud droplet formation. However, although the technology for counting these very small particles became available a decade ago, concentrations of ultrafines throughout the atmosphere have never been systematically measured in the Midwest. Charles Stanier’s grant allowed the first such Midwestern tests, which were performed from the ground up to a five kilometer elevation. These measurements helped address one of the largest uncertainties in climate-change assessments and models.
-
Observations on the Movement of Bedload Using Motion-Sensing Radio Transmitters
Characterizing the movement of sediment along river bottoms has always posed a challenge: The movement of these bouncing particles is confounded by both the variability of the bed material itself and by stream flow’s turbulent nature. Thanos Papanicolaou and Jerald Schnoor developed techniques to use thousands of minute, motion-sensing, radio-tracking techniques (Radio Frequency Identification systems) to simulate individual sand-sized sediment particles and to study their movement. Their use enabled the researchers to study the displacement, rate of motion, and pathways of individual sediment particles, and fed into predictive models of sediment movement. In future years, this technology could be used for applications-oriented field monitoring of sediments.
-
-
2007
In 2007 year, CGRER awarded five seed grants totaling $148,230.
-
Optimization of Environmental and Economic Benefits of Corn Harvesting for Biofuel Production Amy Kaleita
Biofuels are seen as economic windfalls for Iowa. While corn-based biofuels currently are made from the corn kernels, methods for converting lignin-containing plant materials (such as corn stalks and leaves) into ethanol are being developed. However, the removal of corn residues from cropland significantly increases the risk of soil erosion — one of several potential environmental costs related to biofuel production. How do biofuel’s immediate economic benefits balance with such long-term environmental costs and the land’s sustainability? Amy Kaleita and James Newman created a numerical model that produced a county-by-county “erosion risk map” that estimates soil loss at different rates of corn residue harvest. This model is available to individual farmers, who can use it to calculate biofuel-related erosion losses on a more detailed level.
-
The Effect of Harvesting Trees, Shrubs, and Native Grasses on Soil Carbon Sequestration and Greenhouse Gas Flux in Riparian Buffers Designed to Provide Biomass for Biofuel Production
Riparian buffer strip plantings concentrate nitrogen fertilizers and carbon in their living and dead plant parts. Because they sequester more carbon and nitrogen than they release, buffers help control the greenhouse gases carbon dioxide, nitrous oxide, and methane. By supplying carbon to the microbes in the soil ecosystem, riparian buffers stimulate the denitrification process which converts excess nitrogen fertilizer to harmless nitrogen gas. Buffer strip plants are now being considered as a cellulosic biofuel feedstock. This use would increase the frequency of harvesting and accelerate decomposition in the buffers. Such changes may shift the release of harmless nitrogen gases to higher proportions of potent nitrous oxide. Richard Schultz and Thomas Isenhart compared the release of the various forms of nitrogen gas (as well as carbon dioxide and methane) from undisturbed riparian buffer strips with that of harvested sites, and thus assessed the ramifications of biofuel production before such harvests commence.
-
Inter-Calibration of Global Remotely Sensed Vegetation Measures
Numerical models of vegetation, hydrology, climate and other environmental processes rely in part on data collected by satellites. Data sets of nearly 30 years duration are available, but recent design advances have improved sensors that collect information on the spectral and thermal characteristics of Earth’s surface. Although previous data sets continue to provide valuable long-term records, improving the compatibility of earlier data sets and more recent data collected with the improved sensors would provide more robust analysis of the Earth’s surface features. Marc Linderman, Kate Cowles, and Dale Zimmerman provided such improved compatibility by using current, high-quality satellite data to correct earlier, less reliable data sets. The improved data sets better assess trends in our planet’s vegetational activity, and provide better baseline information for today’s more precise studies of changes in agriculture, land cover, and climate.
-
Heterogeneous Photochemistry of Atmospheric Aerosol
For nearly a decade, Vicki Grassian and collaborators have been working with heterogeneous atmospheric chemistry — that is, the chemical interplay between atmospheric particles and trace atmospheric gases. She has investigated how these interactions are significant in altering the troposphere’s chemical balances, a feature important to the modeling of changing climate. She and Mark Young extended that research into a new area, incorporating the effects of sunlight and asking the question, “What influence does heterogeneous photochemistry play in atmospheric chemistry?” They looked at organic material of biological origin (e.g. from soil) as well as organic- and nitrate-coated particles, and measured light-induced changes in the particles and key trace gas species, changes that also could be important to climate and climate models.
-
Observational and Modeling Studies of Rainfall Interception by Corn Plants
Numerical models are continuing to increase our scientific understanding of the hydrological cycle. However, variations in the Earth’s surface cover and other variables continue to confound measurements and models. Witold Krajewski addressed one such variable: interception of rainfall by corn, a process that is not well understood. Corn provides significant storage for water when integrated over Iowa’s vast fields of rowcrops. This storage modifies rainfall-runoff processes and the exchange of water mass and energy between land surface processes and the atmosphere through evaporation. The project studied the interception of rainfall by corn plants using in-house developed sensor systems. The grant funded the development of the observational system and demonstrated its usefulness in the field — efforts that are necessary prerequisites to subsequent field-sampling experiments and the development of mathematical models of the rainfall interception process.
-
-
2006
In 2006 fiscal year, CGRER awarded six seed grants totaling $145,092.
-
Ecological Intensification of the Industrial Bioeconomy: Sustainable Biofuel Production through the Integration of Perennial Crops with Advanced Biomass Conversion Technologies
Robert Anex considered the use of native perennial grasses as biofuels for bioenergy. The researcher evaluated the possibility of recovering key plant nutrients from such grass crops, and recycling these nutrients onto croplands. Such recycling of recovered nutrients could maintain highly productive farmland while reducing the use and impact of chemical fertilizers, improving energy use efficiency, and creating more sustainable agricultural systems.
-
A Workshop to Assess Climate-Change Effects on the Ice Regimes of Northern Rivers
Anecdotal information suggests that global climate change is altering the ice regimes of many northern rivers, and is increasing ice jam severity. This grant, awarded to Robert Ettema and Allen Bradley, funded a 2006-07 workshop involving leading researchers from Russia, Canada, and the U.S. These experts produced a substantial proposal for an international study of climate change impacts on ice regimes of northern rivers.
-
Assessing the Ecotoxicology of Nanomaterials and Identifying Biomarkers in Bacteria Exposed to Nanomaterials
Nanomaterials are increasingly being used in commercial products and environmental applications. Jiasong Fang assessed the environmental risks and ecotoxicology of such extremely small particles. In particular, the research elucidated nanomaterials’ stress on bacteria, determined imposed shifts in microbial communities, and identified reliable biomarkers for assessing nanomaterial’s effects.
-
Equity in Relief: Urban Water-supply and Recovery from Tsunami during Suspended Civil War in Sri Lanka
Paul Greenough and Harish Naraindas examined the equity of relief distribution in three Sri Lankan cities following the December 2004 tsunami. Post-storm restoration of drinking water was studied to determine if aid was allocated according to need or, as alleged by some, according to politics. Field studies were followed by a workshop in Iowa City, where funding proposals for more extensive research were developed.
-
Real-time, Personal Sampling for Airborne Nanoparticles
Although short-term exposure to nanoparticles from traffic may be associated with cardiac sudden death, current sampling methods hamper efforts to directly assess this relationship. Thomas Peters developed a novel monitor to assess fluctuations in personal exposure to nanoparticles. The research may impact future regulation of such extremely small particles.
-
Using the Past to Create a Sustainable Future for Agriculture: The Impact of Federal Farm Policy on Environmental and Social Landscape Change in Iowa
The twentieth-century intensification of rowcropping has created a uniform landscape lacking in environmental and socioeconomic resilience. This interdisciplinary project, conducted by Lisa Schulte and Paul Brown, detailed how U.S. federal farm policies have socially and ecologically affected three rural Iowa townships between 1933 and 2002. The resulting historic insights helped create a vision of agricultural and rural sustainability, which may feed into revisions of federal farm policy.
-
-
2004
In 2004, CGRER awarded five seed grants totaling $100,000.
-
Historical Controls on the Evolution of Continental Plant and Insect Herbivore Biotas
John Nason considered the long-term effects of changing climate on genetic variability. His project examined the amount of genetic divergence in four Sonoran Desert plants and their dependent herbivorous insects. These organisms are thought to have migrated into their current Sonoran locations during the past 10,000 years, following the close of the Pleistocene. By using molecular genetics to compare the standing genetic variability of multiple plant-insect populations, this project determined whether genetic adaptability was lost during the northward migrations, or whether physical barriers induced more significant changes in the species’ genetics. The identification of migration-induced genetic changes could bode poorly for native communities that are likely to be forced to migrate by global warming; loss of genetic variability could reduce the environmental adaptability of native populations, making them more susceptible to possible extinction.
-
Capturing Iowa’s Industrial Age Record of Global Change
This project marked Iowa’s first attempt to use the isotopic composition of rainfall as a tool to fingerprint climatic trends of the past few hundred years. Jeff Dorale, Greg Ludvigson, and Dick Baker attempted to procure intact layered sediments from the depths of northwest Iowa’s Lake Okoboji. These annual sediment deposits, which are visibly layered and thus can be counted and aged, contain isotopes of oxygen that identify the geographic origin and airmass history of precipitation falling on the lake. They thus can be used to track the global air circulation patterns that cause precipitation in Iowa. Identifying the changes in isotopic composition allowed the investigators to identify evolving weather trends from before the Industrial Revolution to the present, an accomplishment that in turn may be predictive of Iowa’s future weather and precipitation patterns.
-
Stable Carbon Isotope Fractionation in Fatty Acid Biosynthesis of Piezophilic Bacteria and Implications to Paleoenvironmental Reconstruction
Jiasong Fang investigated whether biomarkers now used to decipher ancient oceanic environments are valid. The deep sea floor serves as the final repository for all oceanic activities. Sediments there contain bacterial byproducts (fatty acids) which are used to interpret the ocean’s paleoenvironments. However, interpretation of oceanic deposits is now based on our understanding of fatty acid synthesis and carbon isotope fractionation in surface-water bacteria. Fang used his grant to grow deep-water oceanic bacteria and compare their fatty acid synthesis and carbon isotope fractionation to that of surface-water bacteria. Differences or similarities found in this comparison were used to ensure that we are correctly reading the ocean’s ancient geochemistry and distant past.
-
How Accurately Can I Remotely Sense Surface Temperature? Practical Options for Investigators focuses on improving the accuracy of remote sensing equipment used to measure surface temperatures.
Brian Hornbuckle, Thomas Sauer, and Elwynn Taylor attacked inaccuracies inherent in the use of an infrared thermometer (IRT). Although the research instrument of choice when remotely obtaining detailed radiometric temperatures of land surfaces (vegetation, soils, etc.), an IRT actually compounds measurements of Earth surface emissions with those of infrared emissions from the sky. This grant concentrated on quantifying the resulting error and its variation, in preparation for submission of a major grant to determine standard, easily applied correction methods for this error.
-
Development and Implementation of an Aerosol Flow System for Laboratory Studies of the Impact of Atmospheric Aging on the Optical Properties of Mineral Dust Aerosol
Paul Kleiber and Vicki Grassian concentrated on the climatically significant interplay between light and dust. The absorption and scattering of solar radiation by mineral dust aerosol is crucial to the Earth’s temperature balance and climate. In simple terms, dust scattering of incoming solar radiation tends to cool the atmosphere, while dust absorption of outgoing terrestrial radiation has a warming effect. However, dust’s optical properties are so poorly understood that we don’t know whether mineral dust aerosol causes net global warming or cooling. This grant funded the construction and initial laboratory use of an aerosol flow-absorption cell designed to investigate this question.
-
-
2003
In 2003, CGRER awarded seven seed grants totaling $127,993.
-
Synthetic Musk Fragrances in Great Lakes Sediments
Synthetic musk fragrances (SMFs), compounds widely used in cosmetics, soaps, shampoos, and other personal care products, are released in treated wastewater effluent and also exhibit aerial transport. These persistent chemicals, now ubiquitous in the environment, are known to be endocrine disruptors, but details of their fate and potential toxicologic impacts on humans and ecosystems remain poorly understood. This project evaluated the presence and fate of SMFs in the Great Lakes. Keri Hornbuckle, Jerry Schnoor, and Bryan Boulanger measured specific SMFs and their breakdown products in air, water, and sediment samples collected at four sites in Lakes Ontario and Erie. Sediment cores yielded information about trends in SMF lake contamination over the last 30 years. These data improved our understanding about the presence, storage, and decomposition of SMFs in the Great Lakes, laying down a firmer baseline for understanding their possible health impacts.
-
A Geochemical Survey of Iowa’s Freshwater Mussels: Understanding their Historical Decline
Freshwater mussels constitute excellent biological monitors of water quality. These bottom-dwelling animals, once common in Iowa’s streams, depend on specific host fish and clean streamwater for life and reproduction. Iowa’s mussels are now in serious decline. Proposed explanations include the disappearance of host fish due to damming of rivers, and habitat degradation through agriculturally-induced siltation, eutrophication, and waterborne pesticides. Donna Surge and Scott Carpenter performed the first geochemical analyses of Iowa’s mussels, comparing carbon and oxygen isotopes of shells from the late 1800s with those of the late 1900s. Resulting data allowed the researchers to reconstruct changes in stream productivity and climate to clarify the mechanisms responsible for current mussel declines.
-
Environmental Effects on Stable Isotopes and Carbon Cycle Processes in Agricultural Settings of Iowa
Concentrations of atmospheric carbon dioxide have increased over 25 percent since the onset of the Industrial Revolution, but the fate of these emissions remains poorly understood. Terrestrial ecosystems both absorb and emit this greenhouse gas in varying amounts that depend on ecological, seasonal, and environmental conditions. The complexity of these processes significantly impacts computer models that attempt to predict future climate change based on altered atmospheric CO2 levels. German Mora collected critical data about day-to-day and seasonal changes of both carbon and oxygen isotopes in Iowa’s corn and soybean fields. The data provided insight into carbon fluxes related to the plants’ respiration and the assimilation of CO2 during photosynthesis. By elucidating the complexities of gaseous interchange between terrestrial ecosystems and the atmosphere, the research helps predict cropland responses to future atmospheric changes.
-
Applicability of Aquatic Life Cycle Testing to the Assessment of Ecological Health Impacts of Emerging Contaminants
Pharmaceuticals and personal care products (PPCPs) such as prescription drugs, food supplements, sunscreens, and cosmetic ingredients constitute an emerging group of little-tested water contaminants. Innovative approaches are needed to evaluate untested, potential, subtle ecological effects of these compounds that are not discernable through standard toxicological methods. Meredith Gooding examined responses of freshwater mussels to SMF contamination. Following laboratory exposure to SMFs, mussels were studied for changes in growth, morphology, bioaccumulation, and mortality. Consideration of chronic, low-level exposure at different life stages were addressed by testing both mussel larvae and juveniles. The results provided data on the suitability of using mussels as test organisms for PPCPs, and more broadly helped determine the need to further evaluate environmental PPCPs’ health impacts.
-
Characterization of Particulates and their Role in Environmental Health
Rural inhabitants are exposed to unique health hazards. For example, concentrated animal feeding operations (CAFOs) have long been known to affect the respiratory health of humans who work therein. Airborne contaminants combine to form a complex mixture that is deleterious to health at unexpectedly low levels. One poorly understood component of the CAFO problem involves synergistic health effects of gases adhered to inhalable particles. Vicki Grassian and Patrick O’Shaughnessy quantified ammonia gas adhered to corn dust and swine-confinement dust, characterizing the complexes under varying environmental conditions. They made similar efforts with gaseous polycyclic aromatic hydrocarbons (PAHs) adhered to tractor diesel exhaust. This second complex (not associated with CAFOs) is thought to resemble the soot-adhered PAHs that are known to impact respiratory health in urban environments. Lastly, this project established new collaborative efforts between researchers in chemistry and environmental health.
-
Quantifying the Health and Climate Benefits of Curbing Air Pollution in Megacities: Comparing Shanghai and Santiago
Developing countries face tremendous challenges when attempting to balance the costs and benefits of economic development. The fossil fuels used to power increasing numbers of vehicles and industries also degrade human health and magnify climate change processes. However, these longer-term problems are often overlooked in the search for short-term economic gain. Greg Carmichael sought to provide a tool that would encourage megacities in the developing world to consider certain economic benefits of reducing greenhouse gas emissions. An existing numerical model for analysis of multiple development-related questions, “IAMS,” was further refined and tested for its ability to integrate costs and benefits of air quality management systems. Health-related improvements (e.g. decreasing chronic bronchitis or workday losses) were then compared with expenditures on emission control measures. This model, once refined, is expected to encourage megacities around the world regularly to integrate protection of their citizens’ health into policy decisions.
-
Responses of Vegetation and Fire to Little Ice Age Climate Change across a Wisconsin Sand Plain
Ecologists and land managers now realize that wildfires were crucial to many pre-settlement ecosystems. Thus, scientists are increasingly using prescribed fire to restore habitats for endangered native species. Details about fire’s long-term historic interactions with specific native communities, however, often remain poorly understood. Elizabeth Lynch proposed to clarify the issue for one area: northwestern Wisconsin’s sand plain. Charcoal and pollen deposits were tested for their ability to relate changing vegetation to fire history in three sand plain sites. Project results were immediately useful to land managers and restoration ecologists working in the region. However this effort also constituted the initial phase of a larger sand plain interdisciplinary investigation of interactions among vegetation, fire disturbance, climate, and soil. The larger project aims at delineating the region’s long-term ecological history through mapping evolving vegetation and fire patterns at 200-year intervals for the past 2,000 years.
-
-
2002
In 2002, CGRER awarded four seed grants totaling $75,815.
-
Development of a High-Resolution Paleoclimate Data Set from New Zealand using Speleothem Growth Banding and Stable Isotopic Ratios
CGRER researchers have been developing “paleoclimate proxies” for several years. These proxies (typically annual depositions of materials such as limestone in cave stalagmites) allow the interpretation of ancient climates that predate human record-taking, and provide a baseline for understanding future climatic shifts. Rhawn Denniston took his search for proxies to the Southern Hemisphere, for which paleoclimatic data remains sparse. He performed high-resolution examinations of annual growth bands (which are linked to precipitation) and stable isotope ratios (which reflect temperature and vegetation activity) of stalagmites collected in New Zealand. In addition to providing basic information about South America’s previous long- and short-term climatic shifts, his studies helped decipher how the changes in Southern Hemisphere’s climate corresponded to periods of rapid climatic change in the Northern Hemisphere.
-
Factors Affecting the Adoption and Conservation Value of Certified Organic Coffee Production in Oaxaca, Mexico
Preservation of biodiversity in the tropics depends in large part on the ability of local residents to see such preservation as viable and profitable. Tad Mutersbaugh and George Malanson attempted to assess indigenous Mexican farmers’ responses to one such preservation-based program: growing certified shade-grown organic coffee. Doing so requires that coffee producers meet the stringent requirements of U.S. or European coffee certifiers. These requirements may include numerous environmental benefits, for example erosion control or preservation of a diverse canopy that favors wintering neotropical bird populations. However, the certification process may be difficult and restrictive for small coffee producers. The research team described the factors that shape farmers’ participation in certification programs, and determined how well the certification programs foster preservation of native biodiversity. Their results relate to the certification of other crops (such as sustainably produced tropical lumber) and have wide-ranging implications for future conservation efforts.
-
Sustaining Pollinator Diversity in a Fragmented Landscape
Stephen Hendrix and Diane Debinski completed preliminary studies on native butterfly and bee diversity in Iowa’s prairie remnants, with emphasis on how this diversity relates to the remnants’ size and pattern on the landscape. These insects provide a crucial role in ensuring pollination and thus successful reproduction of the 70-80 percent of tallgrass prairie plants that are forbs, and thus are crucial to the long-term integrity of this endangered ecosystem. This pilot study tested sampling procedures, developed preliminary bee species lists, examined butterfly pollination behavior, and completed other prerequisites preliminary to an National Science Foundation proposal.
-
Microbial Source Tracking in the Upper Iowa Watershed using E. coli Ribotyping
Mary Skopec, Lora Friest, and Nancy Hall developed a tool to evaluate the source and transport of bacterial contaminants in Iowa’s rivers. Normally, in urban areas, the presence of harmless fecal coliform bacteria (E. coli) in water samples is an indicator of the potential for other human disease-producing organisms to enter the water. However, in Iowa, E. coli may also originate from farm livestock or wildlife; these resources may have lowered risk to human health. Using a process called “ribotyping,” the research team “DNA fingerprinted” E. coli from a variety of livestock and wildlife sources in the Upper Iowa River watershed. The group then prepared a database that allows rapid and accurate evaluation of the source of water contaminants, so that remedial actions can be targeted accurately. This new research field is likely to raise numerous questions about the natural occurrence and health effects of waterborne microorganisms.
-
-
2001
In 2001, CGRER awarded eight seed grants totaling $149,874.
-
High-Resolution Stable Isotope Analysis of the Last Deglaciation as found in the Sediments of Glovers Pond, New Jersey
If we are to develop a critical perspective on modern human-generated climatic alterations, we must understand the timing, rate, and intensity of ancient global climate change. However, creating a high-resolution picture of ancient climates is not easy. Scott Carpenter has identified one window to the past through his studies of Glovers Pond, a small lake in New Jersey, whose sediment cores present a unique record of Earth's last deglaciation or past 20,000 years. His CGRER grant defrayed the cost of dating these cores. Because of the lake's proximity to the North Atlantic Ocean, these data helps us better understand the relationship between ocean circulation and continental climate change.
-
Use of Environmental Isotopes to Determine the Predominant Sources of Moisture that Drive the Precipitation Events in Northeast Iowa
The hydrologic cycle, which traces water’s flow around the globe, is integral to the climate system. It also is a crucially important determinant of life on Earth as well as the success of human activities. However the details of the hydrologic cycle require clarification. Mohammad Iqbal investigated one facet of this cycle: evaporation-precipitation processes in Northeast Iowa. He analyzed rainwater isotopes to determine what portion of our precipitation is derived from local sources (e.g. evaporation from nearby lakes and streams) rather than distant sources such as the Pacific Ocean or the Gulf of Mexico. This analysis also provided a mechanism for tracing shifts in regional precipitation patterns through time.
-
Conceptual Network Design Studies for Iowa Hydrologic and Environmental Validation Site
Satellite, radar, and other remote sensing data, as well as results of numerical models of land and atmospheric processes, need to be validated against high quality in-situ data before they become credible bases for operational, management, and policy decisions. Witold Krajewski, William Eichinger, and Keri Hornbuckle created a hydrologic and environmental validation site, to run jointly with the University of Iowa's IIHR-Hydroscience and Engineering. The permanent, 400-square-kilometer “natural laboratory” houses numerous measuring devices that record precipitation, soil moisture, stream flow, water quality, energy balance, and other hydrometeorologic and biochemical variables over long time periods. CGRER's seed grant provided planning funds so that detailed proposals for this national site could be submitted to other funding agencies.
-
Magnetically Modified Nickel-Metal Hydride Batteries for Reduced Environmental Emissions
The environmental impacts of automobiles could be greatly reduced if automobiles were powered by electricity rather than by internal combustion engines. Given current technologies, the first commercially viable zero-emission vehicles will be battery-based, and nickel-metal hydride batteries have fewer environmental repercussions and less toxicity than other batteries. Johna Leddy increased the performance of this type of battery through magnetic modification, a process that enhances rates of electron transfer and interfacial reactions.
-
Grass-type Controls over Carbon Fluxes from Grasslands
The U.S. government currently pays farmers to remove nearly 34 million acres of cropland from production. This Conservation Reserve Program (CRP) provides numerous benefits, including the promotion of carbon sequestration in soil. James Raich compared the soil carbon dynamics (sequestration and turnover) of non-native, cool-season (C3) grasses to those native, warm-season (C4) prairie grasses. His investigations and large field experiments helped determine how landscape carbon budgets can be influenced by the types of grasses that are planted.
-
Measuring Net Greenhouse Gas Emissions from Wetlands
Growing plants can be used to capture and store carbon dioxide, thus decreasing atmospheric concentrations of this greenhouse gas. Reconstructed wetlands could serve this end, but their decomposing plant material also release the greenhouse gases methane and nitrous oxide into the atmosphere. Jerry Schnoor and Richard Ney investigated the overall balance of greenhouse gases emitted from wetland systems. They reviewed literature and investigated models for these greenhouse gas flows, and developed a verification protocol for wetland greenhouse gases that is suitable for field testing.
-
Basin Scale Water Quality Change and Uncertainty under Global Climate Change
Predictions of the effects of climate change are based largely on numerical, computerized global climate models (GCMs) and on regional climate models (RCMs) that cover a smaller area but have a finer resolution than GCMs. Gene Takle and Zaito Pan evaluated the differences between GCM and RCM predictions of future water quality accompanying climate change. They quantified uncertainties in these water quality models, and specifically explored water quality problems associated with Gulf of Mexico hypoxia and Upper Mississippi River basin erosion.
-
Mass Spectrometric Probes of Photochemistry in Natural and Model Water Samples
Solar irradiation of surface waters that contain inorganic and biological materials can result in complex photochemical reactions. The resulting product species can have enormous consequences for the greenhouse gas effect and global carbon cycle. Mark Young developed a mass spectrometry apparatus that allows researchers to better understand, quantify, and monitor these photochemical reactions.
-
-
2000
In 2000, CGRER awarded seven seed grants totaling $120,000.
-
Stable Carbon Isotope Record of Holocene Vegetation and Climate Change in Alluvial Fans
E. Arthur Bettis received a $19,252 grant to help decipher evolving vegetation communities during the Middle Holocene (8500 to 2000 years before present) across the Midwest's eastern plains and prairies. This period is poorly represented by standard paleoecological indicators such as fossil pollen deposits. Bettos measured stable carbon isotope values of soils in alluvial fans from eastern Nebraska to the Mississippi River Valley. These values revealed the detailed history of fluctuating grassland and savanna community composition during the Middle Holocene, the warmest, driest period of the past 10,000 years. His results helped us understand the expansion of prairies and the retreat of forests during a warm, dry climatic period potentially similar to a climate that could be induced through global warming.
-
The Role of Heterogeneous Photochemistry in the Atmosphere
While atmospheric research traditionally has focused on reactions among gases, Vicki Grassian has examined the interactions between trace pollutant gases (such as ozone and sulfur dioxide) and atmospheric particles. Particles are known to alter the chemical balance of the atmosphere by catalyzing reactions among gases — for example, in marine environments, salt particles catalyze reactions that perturb the tropospheric chlorine budget. Grassian received a $20,000 grant to incorporate photochemistry into her research. She identified and quantified reactions between particles and trace gases that are induced by solar radiation. Specifically, Grassian used spectroscopic techniques to determine the molecular identity and speed of potentially significant photochemical reactions occurring among gases that adhere to the surface of atmospheric particles.
-
Latitudinal Gradients in Phenology of Insect Attack and Host-Associated Genetic Differentiation in the Goldenrod Elliptical-Gall Moth
Ecologists Stephen Heard and John Nason received $18,750 to examine incipient speciation among a gall-moth that feeds on goldenrod plants. Different strains of this moth, although living in the same field, feed off two species of goldenrod that mature at different times. The two moth strains, which also mature at different times and are thus not likely to interbreed, may be on their way to becoming two distinct species. Heard and Nason, by comparing the maturation dates and genetically-coded metabolic enzymes of both moth strains at two distant and climatically distinct sites, examined if this speciation is indeed occurring. By attempting to define a detailed mechanism for speciation and relate it to climate-controlled plant growth, this research addressed a critical concern of global change: Will a warming climate provide yet one more attack on Earth's declining biodiversity?
-
Fragile Flora Database: Iowa’s Endangered, Threatened, and Special Concern Plants
Diana Horton received $9,245 to boost outreach efforts at the university's herbarium, the repository of 70,000 pressed plant specimens collected in Iowa during the past century-and-a half (The herbarium also contains 180,000 specimens collected outside of Iowa). The Iowa collection constitutes a physical record of our state's thousands of plant species, and as such affords a solid scientific base for studies of changes in the state's flora. The grant also partially funded an assistant to create an online database for all Iowa plant specimen information.
-
Solid State NMR Studies of Environmental Catalysts
Sarah Larsen received $19,908 to investigate fundamentals of environmental catalysis — the use of chemical compounds to solve environmental problems by increasing the speed of desired chemical reactions. Her work involved the use of inorganic microporous powders called zeolites. Gases flowing through the zeolites' miniscule pores undergo specific chemical reactions. For example, nitrogen oxides — waste gases produced by internal combustion engines that lead to ozone pollution and acid rain — can be converted to nitrogen, water, and carbon dioxide through zeolite catalysis. Larsen used nuclear magnetic resonance (NMR) techniques to identify the exact reaction process of this conversion and to identify intermediary compounds. Understanding the mechanics of the conversion process would enable the development of better catalysts and thus decrease toxic emissions from automobiles and other such engines.
-
Downscaling Local Precipitation from Large-Scale Atmosphere Conditions Using Synoptic Weather Classification and Neural Networks
Climatologist Dave McGinnis received an $18,550 seed grant to investigate correlations between broad atmospheric conditions and local precipitation events. By “characterizing the reasons why it rains,” as he put it, he developed statistical methods that helped refine information from GCMs, which scientists use to model large-scale climatic events, and thus predict small-scale climatic events. His grant involved use of statistical analysis of past climate data to downscale the GCMs and greatly increase their resolution. In particular, McGinnis focused on local, extreme weather events such as multi-inch rainstorms, in hopes that he could contribute to models that can accurately predict whether extreme events will increase or decrease given various future global climate change scenarios.
-
An Ethnographic Study of Climate Considerations in Regional Agricultural Decisions
Richard Horwitz and Dave McGinnis received $14,295 to help outline the types of products that a climate-forecast center could deliver to the general public, and what language would be best for transmitting these products. The researchers interviewed members of Iowa's agricultural community to gain a basic understanding of how they used climatic information, where they got it from, what information they found most useful, how they used it in decision-making, and how technical climatic information could best be transcribed into the common vernacular. The intent was to develop a "folk climatology" to improve the researchers' understanding of the transfer of climatic information.
-
-
1999
In 1999, CGRER awarded four seed grants totaling $76,083.
-
Evaluation of Climate Change Scenarios for the Central U.S.
Ray Arritt received $19,172 for examining the ability of global climate models (GCMs) to capture regional climatic fluctuations. He evaluated whether GCMs can reliably reproduce aspects of weather systems that are important to the shaping of regional climate. A positive answer to this question would suggest that we can use regional numerical climate models to focus on these systems in more detail. More specifically, Ray extracted data from two of the better GCMs and determined their accuracy in representing two continental-scale circulation patterns: the Great Plains low level jet (LLJ) and the North American monsoon system (NAMS). These circulation patterns are important determinants of the quantity of Iowa's summertime precipitation. Were the GCMs to perform well, that would give us some confidence (but wouldn’t guarantee) that the models could be used to predict how future changes in greenhouse gas concentrations would alter the LLJ and NAMS.
-
Holocene Sphaerosiderites: Calibrating an Innovative Paleoclimate Proxy
Luis Gonzalez and Greg Ludvigson received a $17,055 grant to stretch use of the new Paul H. Nelson Stable Isotope Laboratory into a new area. Researchers have known for years that sphaerosiderites could be used as indicators of environmental conditions of ancient times. These tiny nuggets of the iron carbonate mineral siderite up to a few millimeters in diameter are abundant in wetland soils of the distant past. However the formation of these ancient sphaerosiderites is not well understood, and thus their encoded messages about past temperatures, rainfall, and soil chemistry cannot be easily deciphered. Gonzalez and Ludvigson used the Isotope Laboratory to determine the sphaerosiderite carbon and oxygen isotope chemistry in order to grasp how hydrology, climate, and vegetation affect sphaerosiderite growth in modern soils. They then applied their findings to the formation of ancient sphaerosiderites, extrapolating information about ancient environments in the process. In particular, they strove to outline the environmental parameters of the mid-Cretaceous, the most recent period that experienced both atmospheric CO2 concentrations and global mean temperatures similar to — and even greater than — those predicted for the near future.
-
Design and Installation of the Iowa Atmospheric Measurment Station (IA-AMS)
Keri Hornbuckle and Bill Eichinger received $20,000 to establish the Iowa Atmospheric Measurement Station (IA-AMS). This permanent monitoring station, located near Iowa City, allows the long-term measurement of a variety of very specific atmospheric and climatic traits. As one example, Keri's primary interest lies in the transport of persistent organic pollutants (POPs), which are air toxins such as dioxins, herbicides, and byproducts of combustion. Although these compounds continue to float around the globe, being deposited and then returning to the air time and time again, little is know about how climate, changing land use patterns, or changes in diurnal, seasonal, and global temperatures affect their movement or changing concentrations in the air or soil. Her collaboration with Eichinger produced a detailed picture of the fluxes and relative concentrations of such pollutants between air and terrestrial surfaces. The IA-AMS pulls together a diverse group of researchers from within and outside of the UI, all of whom observe and measure or numerically model atmospheric or climatic variables in different manners. It provides an excellent resource for student training and research projects in chemistry or meteorology. In anticipation of future projects, Hornbuckle submitted an NSF grant to establish similar stations in Mexico and Canada.
-
An Experimental Examination of the Role of Mineral Aerosols in the Greenhouse Gas Effect
Mark Young received funding to perform a very different type of detailed atmospheric analysis. Young’s $19,856 grant allowed the completion of an atmospheric reaction chamber on the UI campus and the initiation of its experimental use. This chamber is dedicated to analyses of the interactions between aerosolized mineral particles and atmospheric gases, interactions that have been recognized as potentially important to climate change. This CGRER grant encouraged multidisciplinary collaboration that broadened and deepened our understanding of the gas-particle interplay in a very detailed manner, looking at the interaction gas by gas, mineral by mineral, always in a controlled environment. Young and Paul Kleiber designed the reaction chamber and its instrumentation and outlined experimental protocols. Vicki Grassian analyzed chemistry of such interactions, while Greg Carmichael fed the resulting data into his numerical models of atmospheric chemistry and transport. This unusual integration of disciplines and approaches made this work globally unique.
-
-
1996
In 1996, CGRER awarded three grants on the subject of "Iowa’s Environmental Future."
George Malanson focused his efforts on land cover. He evaluated spatial data bases that were already in existence — basic geological features, the Department of Natural Resource’s spatial data systems for Iowa's land cover around 1850, and water well distribution. Malanson analyzed such data bases and united them into a single recognizable format so that all resulting maps could be overlaid and multiple features could be viewed in one document. He also designed user-friendly techniques for the public to access this information.
Gene Takle and Bill Gutowski looked at the interaction between land use changes and climate. Takle and Gutowski accessed GIS systems collected by Malanson and translated them to parameters that interfaced climate-related data — such as deep soil moisture and the total surface area of transpiring leaves. Researchers can then overlay these high-resolution maps of various surface features (historic vegetation, groundwater, soils, etc.) with specific climatic scenarios.
Gerard Rushton studied the inaccessibility of Iowa's environmental spatial data. While Iowa's GIS data sets were numerous and increasing, they were of little use if no one could readily retrieve them. Rushton eased this problem by creating an environmental data clearinghouse for Iowa; the clearinghouse was actually a program at a centralized computer site that attached users via the Internet to dispersed GIS data systems. No central depository existed; the data remained with agencies and researchers scattered throughout the state while they constantly manipulated and upgraded them. Rushton's technologies and methodologies paralleled those of the National Spatial Data System (NSDS).
-
1995
In 1995, CGRER awarded seven seed grants totaling $95,909.
-
The Effects of Climate Variability on the Occurrence of Extreme Precipitation in the Upper Midwest
A. Allen Bradley established whether changes in atmospheric circulation patterns affect the probability of hydrologic extremes such as Iowa's 1993 floods. By using an innovative regional framework to detect and quantify changes in rainfall extremes, Bradley aimed to find linkages between climate variability and rainfall occurrence probabilities. His work established a regional baseline to quantify anomalous events such as the 1993 floods, and helped to assess the sensitivity of rainfall extremes to potential climate change.
-
A Numerical Study for the Global Carbon Cycle Through the Atmosphere/Terrestrial Biosphere/Ocean Interaction
Tsing-Chang Chen coupled the recently-developed Iowa Global Carbon Model with a global climatic change computer model that was developed at the National Center for Atmospheric Research (NCAR). This allowed him to combine the unique features of each: those in the Iowa model that assess interactions of the atmosphere, terrestrial biosphere, and ocean, with the features of the NCAR model that allow assessment of regional variations in the global temperature response to non-uniformly-changing CO2 concentrations.
-
An Investigation of the Effects of Uncertainties in Aerosol Mixing on Radiative Forcing Calculations
Annmarie Elderling studied the ability of atmospheric particles (pollutants such as sulfate aerosols) to cool the earth's temperature. Such particulates may counteract the global warming potential of steadily-rising greenhouse gases. However, calculations about the cooling effects of these particulates are based on several sweeping assumptions about the size composition of the particulate material. Eldering performed numerical studies to quantify the effects of these uncertainties to better understand the radiative properties of these particles.
-
Determination of the Fluxes and Origin of Methane in Glacingenic Deposits and Landfills of the Upper Midwest
Luis Gonzalez and Suellen Seimkuehler quantified and identified the sources of methane in soils and groundwater in sites in the Upper Midwest. More specifically, they developed methods for characterizing and differentiating between methane produced in landfills and normal background methane — that generated naturally from the loess and till sequences of central Iowa.
-
Paleoclimatology and Paleohydrology of the North American Interior in the Mid-Cretaceous “Greenhouse World”
Greg Ludvigson, Luis Gonzalez, Robert Brenner, and Brian Witzke investigated the history and variability of the continental climate during the global greenhouse warming of the Cretaceous Period. By measuring the oxygen isotopic ratios of freshwater carbonate minerals, and dating the non-marine deposits of our mid-continent in which these minerals are contained, they reconstructed air circulation patterns, rainfall patterns, temperature patterns, and other elements of the paleoclimate. Their data is useful to other investigators who are validating computer models simulating the Cretaceous climate system, which are significant because of the possibility of modern-day global warming.
-
Terrestrial-Atmospheric CO2 Exchange
James Raich and Christopher Potter looked at the well-documented seasonal cycle of atmospheric CO2 concentrations: atmospheric CO2 increases in the winter when it’s released from the soil, and decreases in the summer when it’s being stored in growing plants. These researchers coupled, tested, and refined existing computer models, so that they could estimate the seasonal and spatial patterns of this exchange of carbon (as CO2) between the atmosphere and terrestrial ecosystems around the globe.
-
Dating the Mississippi River Valley with a New Uranium-Series Technique
Mark Reagan proposed to develop a new radiometric technique for dating oxidation of sulfide minerals. He determined the timing of the growth of iron oxide minerals as they replace sulfides by using uranium-series isotopes. This new technique was used to investigate the history of the Mississippi River valley, a poorly understood topic. Reagan traced the river's down-cutting by dating water table levels in mines near the river, and dated other important geological phenomena such as cave formation and rock weathering rates.
-
-
1994
In 1994, CGRER awarded 8 seed grants totaling $119,866.
-
Inference of the Effects of Global Change on Growing Season Precipitation Over the Great Plains
Raymond Arritt evaluated the regional impact of potential climate changes resulting from the predicted doubling of atmospheric CO2 by the middle of the coming century. By examining potential changes in large-scale patterns conducive to spring and summer precipitation in the Great Plains, he hopes to estimate precipitation changes and promote the evaluation of adaptive strategies.
-
Decadal Variation of the Northern Hemisphere Atmospheric Circulation Related to the Midwest Climate Variability
Tsing-Chang Chen looked at climatic changes and global air circulation patterns. Over the past 40 years, a deepening of the low pressure system over the North Pacific and amplification of the high pressure system over the California coast have intensified the channeling of cold air from Canada southward into the Midwest. Chen's research was among the first to examine the relationship between short and long-term changes in climate and global air circulation patterns as they affect the Midwest.
-
Characterization of Atmospheric Aerosols of the Midwest with an Application to Visibility Visualization
Annmarie Eldering investigated atmospheric aerosol particulates. Although little is known about their size, chemical composition, or transport in the Midwest, aerosols are important determinants of air quality. By scattering incoming radiation, they also could counteract global warming trends. Eldering’s research will provide the baseline data needed to ascertain problem areas and trace future changes in aerosol levels.
-
The Role of Elemental Iron in Enhanced Reductive Dechlorination of Halogenated Methanes
Brad Helland and Pedro Alvarez looked at the feasibility and specific design criteria for using elemental iron to transform chlorinated methane chemicals (such as carbon tetrachloride) into relatively innocuous compounds. Chlorinated methanes are hazardous both to humans and to the stratospheric ozone layer; thus methods to detoxify them are of great interest.
-
Assessment and Visualization of Interpolation Error in Environmental Monitoring Networks
Claire Pavlik, Marc Armstrong, and Dale Zimmerman evaluated which surface generating techniques most accurately interpolate and display various types of environmental data (such as measurements of acid rain deposition) collected at field stations. To do this, they linked GIS software to a statistical programming environment to map out and visualize environmental data.
-
Research and Development of a Prototype Parallell Global Scale Tropospheric Chemistry Model
Florian Potra and Greg Carmichael developed a sophisticated mathematical model to investigate the chemistry and transport of tropospheric contaminants. This computer model allows faster and more precise simulations of atmospheric transport and chemistry processes, leading to a better understanding of the environmental effects of contaminants around the globe.
-
An Iowa Greenhouse Gas Action Plan
Jerry Schnoor and David Forkenbrock commenced a policy-oriented collaborative research effort with the Iowa Department of Natural Resources and the Midwest Transportation Center. They inventoried Iowa greenhouse gases and integrated strategies for increased energy efficiency and reforestation into an action plan for reducing greenhouse gases in Iowa. There report is available here.
-
Integrated Environmental and Economic Analyses of Potential Implications of Climate Change for Rangeland Ecosystems
U.Sunday Tim and Robert Jolly explored the environmental and economic implications of global warming on rangeland ecosystems. They attempted to integrate biophysical and economic models to estimate the impact of changes in climate on rangeland hydrology, forage production, and animal production. They also used the integrated modeling system to examine the potential impact on regional economies.
-
-
1993
In 1993, CGRER awarded eight seed grants totaling $103,706.
-
Free Radicals and Antioxidants in Ultraviolet Radiation
Gary Buettner and Beth Jurkiewicz used sophisticated technologies (electronic paramagnetic resonance) to detect and identify free radicals and catalytic iron in the skin, substances that hypothetically are induced by the sun's ultraviolet radiation and cause skin cancer — one health concern related to ozone depletion.
-
The Development of a Model of Community-Level Worldviews as a Factor in Local Responses to Global and Regional Change
Janel Curry-Roper studied the community-wide worldviews of nine rural Iowa social groups, in order to better understand the range of possible human responses to environmental change.
-
Cultural Responses to Environmental Change
James Enloe studied prehistoric human remains from home, in northern Europe, where he is searching ancient campsites for signs of prehistoric hunters' behaviors that allowed occupation of new lands during times of gross environmental change.
-
Holocene Vegetational Change in the Prairie Peninsula
William Green considered whether studies of wood-charcoal remains from archaeological sites can elucidate prehistoric environmental changes in the same prairie province, such as prairie expansion, changes in forest composition, and the effects anthropogenic fire.
-
Effect of Habitat Fragmentation of Genetic Diversity in Phlox pilosa
Stephen Hendrix, Robert Cruden, and Lisa Rigney examined how the reduction of native plant populations — the prairie phlox in particular — impacts genetic diversity, fitness, and the ability to withstand further environmental stresses such as changing climate.
-
Coupling a Greenhouse Gas Model with NCAR’s Community Climate Model
Jerry Schnoor devised a policy-oriented model to test the effects of reforestation and energy conservation on carbon dioxide concentrations (and hence on global warming).
-
Integrated Environmental and Economic Analyses of Climate Change Impacts on Crop Production in Iowa
U. Sunday Tim and Ramesh Kanwar extended their efforts from previous year.
-
Documenting the Diversity of Human Environmental Knowledge: The Case of Alternative Food Production from Fragile Environments in India
D. Michael Warren documented how farmers in India have responded to rapidly changing environments (such as deforested hillsides and saline soils) through developing innovative alternative food production systems.
-
-
1992
In its first year administering seed grants, CGRER awarded 18 grants totaling $237,871.
-
Application of Radioastronomical Techniques to Measure Earth’s Ozone Layer
John Fix and Steven Spangler investigated a radio-astronomial technique for measuring ozone concentrations accurately at all levels of the atmosphere.
-
Land-Atmosphere Feedbacks on Regional Scales in Mid-Continent Watersheds
Konstantine Georgakakos attempted to better understand the regional variability of links between soil moisture and climate (specifically air temperature and pressure), over time, through investigating 30 years of data on these traits collected in the Des Moines River watershed.
-
High Resolution Paleoclimatic Analysis in Speleothem Calcite: Cold Water Cave, Iowa
Luis Gonzalez and Mark Reagan determined that analysis of stalagmites can be used to determine shifts in climate (such as periods of high precipitation) over the past 10,000 years.
-
Remote Sensing of Soil Moisture: Basic-Scale Averaging Concepts
Witold Krajewski helped develop more accurate techniques for quantifying moisture, first by evaluating the accuracy of satellite-based large-scale remote sensing of soil moisture (which is an important indicator of more general climatic conditions), then by working on a method of estimating rainfall on the open ocean through recording underwater noise created by the rain.
-
Georgraphic Distribution Analysis of the Forest Trees of Eastern North America
George Malanson and Marc Armstrong improved the precision of computer simulation models for predicting the response of important tree species of eastern North Amoerica's fragmented forests to changes in climate — an important potential result of global warming.
-
A Comparative and Contextual Analysis of Environmental Risk Assessments
Eric Plutzer applied a cultural theory of risk perception and political division to citizen groups in the European Economic Community, thereby theoretically developing techniques for mediating environmental disputes.
-
A Simple Global Carbon Dioxide Model for Scenario Analyses and Research Prioritization
Jerry Schnoor and Y. Yan coupled and cross-checking computer models dealing with greenhouse gasses, thus improving predictions of trace gas characteristics during global warming.
-
Intercomparison of Global Climate Model Simulations for the U.S. Midwest for a Doubling of Atmospheric CO2
Gene Takle and Linda Mearns modeled future temperature variables for the Midwest given present carbon dioxide, and improved the resolution of their model by relating temperature to the Earth's surface characteristics (two grants awarded).
-
Photochemical Processes Affecting Trace Gas Emissions, Carbon Cycling, and Light Attenuation in Aquatic Environments
Richard Valentine looked at the sunlight-induced degradation of dissolved organic material, and the resulting rates of carbon monoxide and carbon dioxide production.
-
Paleoenvironmental Analyses in the Southern Midwest
Richard Baker and Diana Horton studied both ecosystems and climates of the past 10,000 years, in particular searching the southern boundaries of the prairie province for fossiliferous deposits that would allow more detailed investigations.
-
Global Climate Change and Regional Trace Gas Cycles: A Study of Impacts and Feedbacks
Greg Carmichael considered how climate change on a global scale would affect trace gas cycles in the eastern United States and the resulting changes in air pollutants, ultraviolet light penetration, and temperature.
-
Carbon, Nitrogen, and Energy Budgets for Iowa-Grown Biomass Fuels
Lou Licht measured the emission of greenhouse gasses from the burning of biomass fuels (such as corn and wood chips) as alternative fuels, and evaluated their impact on global warming relative to fossil fuels.
-
Radiative Transfer in Rainy Clouds with Application to Remote Sensing of Rainfall
Ted Smith improved understanding of remote satellite sensing of rainfall by investigating the efforts of various cloud types and rainfall patterns on the radiant energy signal received by the satellite.
-
Climate Change Impacts on Hydrology and Water Quality in Iowa
U. Sunday Tim, Ramesh Kanwar, and Robert Jolly considered the ramifications of climatic change on crop production, farm profits, and hydrology in Iowa (two grants awarded).
-
Interpretation and Clarification of the 1992 Convention on Biological Diversity
Burns Weston interpreted and clarified the 1992 multilateral Convention on Biological Diversity. His project helped establish an ongoing Law, Science, and Global Environmental Policy Project within the University of Iowa's law and engineering colleges.
-

